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Abstract. The graded contractions of pseudo-Euclidean Lie algebrae(2, 1) are studied. The non-
equivalent gradings ofo(2, 1) of typeZ3 and aZ2×Z2 are extended to the entire Lie algebrae(2, 1),
using the action ofo(2, 1) on the Abelian ideal (the translations.). The graded contractions embed
e(2, 1) into a large family of six-dimensional Lie algebras. The family includes solvable, nilpotent
and nonsolvable Lie algebras, both decomposable and indecomposable ones. The distinction
between graded and Inönü–Wigner contractions is analysed. The physically most interesting Lie
algebras obtained by the contractions are the inhomogeneous Galilei and pseudo-Galilei.

1. Introduction

Lie algebra contractions were introduced into physics by Inönü and Wigner [14] as a
mathematical expression of a philosophical idea, namely the ‘correspondence principle’. This
principle tells us that whenever a new physical theory supplants an old one, there should exist a
well defined limit in which the results of the old theory are recovered. More specifically Inönü
and Wigner established a relation between the Lorentz group and the Galilei group in which
the former goes over into the latter as the speed of light satisfiesc→∞. As a mathematical
concept, contractions were already used somewhat earlier by Segal [28].

The theory of Lie algebra contractions (and deformations) has acquired a life of its
own. It provides a framework in which large sets of Lie algebras can be embedded into
families depending on parameters. All algebras in such a family have the same dimension, but
they are not mutually isomorphic [18]. The embedding also provides relations between the
representation theories of different Lie algebras in the same family.

Very often the contraction procedure starts from a grading of a simple Lie algebraL

[25, 10], the representation theory of which is well known. The contraction then leads to
solvable Lie algebras, or Lie algebras that have a non-trivial Levi decomposition, i.e. a non-
trivial maximal solvable ideal (the radical) [17]. Typically the aim of the contraction procedure
is either to preserve a chosen subalgebraA while contracting everything else inL in every
possible way [19, 20], or to classify the outcome of all possible graded contractions of a given
Lie algebra [1, 8], as in this paper. Note that the process advances in the direction of the Abelian
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algebra. That is, some of the subspaces, which were not commuting before a contraction, will
commute after it. (It would be possible to study the process in the opposite direction starting,
say, from an Abelian algebra, but that would be an entirely different problem calling for different
strategies.) During successive contractions corresponding to refinements of gradings, one may
ask whether the final outcome may differ if obtained in one step (A → C) or in two steps
(A → B → C). The answer depends on the case. It is easily found from the graph of
successive refinements of the gradings in each specific case: imagine the graph oriented in the
direction of refinements. Then if there is a link, following the directions, betweenB and all
the outcomes ofA → C, there is no difference; otherwise there is a difference between the
two ways of contractingA.

Contractions have been used to develop the representation theory of such Lie algebras,
in particular calculate Clebsch–Gordan coefficients and transformation matrices for non-
semisimple Lie algebras [13].

The close relationship between special function theory and group representation theory
is well known [30]. Recently the theory of Lie algebra contractions has been used to relate
the special functions obtained when separating variables in Laplace–Beltrami operators on
spheres, or hyperboloids, to those obtained in Euclidean, or pseudo-Euclidian spaces [15, 16].

Among other recent applications of Lie algebra contractions, we mention the shell structure
of deformed atomic nuclei [6].

The concept of contraction has recently been extended to the theory of quantum groups,
where it has proved to be very fruitful [7, 4].

The original In̈onü–Wigner contractions can be interpreted as singular changes of basis
in a given Lie algebraL. Indeed, consider a basis{e1, . . . , en} of L and a transformation
fi = Uik(ε)ek, where the matrixU realizing the transformation depends on some parameters
ε. Forε→ 0 (i.e. some, or all of the components ofε vanishing) the matrixU(ε) is singular.
In this limit the commutation relations ofL change (continuously) into those of a different,
non-isomorphic, Lie algebraL′ [14, 27, 9, 32].

A different approach has been developed more recently, namely that of graded contractions
[21, 23, 8, 24, 1]. The Lie algebraL is first decomposed into eigenspaces of an automorphism
of L:

L = L0+̇L1+̇ · · · +̇LN−1 (1.1)

[Li, Lj ] ⊆ Li+j . (1.2)

The commutation relations ofL are then modified in a manner respecting the grading

[Li, Lj ] → [Li, Lj ]ε = εij [Li, Lj ] (1.3)

whereεij are some constants, subject to the condition that [Li, Lj ]ε be a Lie bracket (see
below).

Since gradings can be introduced in a systematic and exhaustive manner, this approach
makes it possible to study contractions in an equally systematic way. Until now, graded
contractions have been considered mainly for simple Lie algebrasL.

The purpose of this article is to apply the concept of graded contractions to an affine Lie
algebra, that is the semidirect sum of a simple Lie algebra and an Abelian one, on which the
semisimple subalgebra is represented faithfully and irreducibly. The considered Lie algebra
is the pseudoeuclidian Lie algebra

e(2, 1) ∼ o(2, 1) +⊃ T (3) (1.4)

and we analyse one grading of this algebra in detail, namely aZ3 toroidal grading. This is a
grading induced by an order three finite subgroup of the maximal torus ofo(2, 1).
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The study of contractions of the Lie algebrae(2, 1) can serve as a model for the analysis
of other non-semisimple Lie algebras, in particular the general pseudo-Euclidean Lie algebra
e(p, q). In principle, contractions ofe(2, 1) could be studied as part of an analysis of
contractions of various real forms of the algebrao(N,C),N = p+q +1. The present study, as
well as previous ones forsl(3,C) [8, 1] show that graded contractions of a given Lie algebraL

lead to a large variety of different Lie algebras. In order to make the systematic investigation
of graded contractions manageable for arbitrary dimensions it is necessary to make use of
successive refinements of gradings [1, 33]. In particular,Z2 contractions ofo(p, 1) can lead
e.g. to the Euclidean algebrae(p), or pseudo-Euclidean algebrae(p−1, 1). Thus, e.g. graded
contractions ofe(p − 1, 1) are refinements ofZ2 contractions ofo(p, 1) [22].

More specifically, the contractions ofe(2, 1) in this article form a specific class of graded
contractions of the Lie algebrao(3, 1) of the homogeneous Lorentz groupO(3, 1).

For somewhat related recent work involving graded contractions and inhomogeneous
classical Lie algebras we refer to de Azcarragaet al [3, 2].

Section 2 is devoted to the gradings of the simple Lie algebrao(2, 1) and we introduce
three inequivalent gradings. These gradings are extended to the entire Lie algebrae(2, 1)
in section 3, yielding five mutually inequivalent gradings ofe(2, 1). The problem of graded
contractions of affine Lie algebras is formulated in section 4. The main results of this article
are summed up in sections 5 and 6. One of the gradings ofe(2, 1), namely theZ3 toroidal
grading is used and all contractions preserving this grading are constructed in section 5. A
total of 23 mutually non-isomorphic Lie algebras is obtained and they are identified using
basis-independent criteria [26]. Section 6 is devoted to contractions corresponding to a fine
non-toroidal grading. Some conclusions are drawn in section 7.

For completeness and uniformity of exposition we present and analyse all outcomes of
graded contractions ofe(2, 1). Hence we include some results that were previously known
[22, 32, 11, 12, 29], especially in sections 6.1–6.3.

2. The Lie algebrao(2, 1) and its gradings

The subalgebrao(2, 1) of e(2, 1) is the Lie algebra of the homogeneous transformations which
preserve the Lorentzian metric(1,−1,−1). In this article we choose the invariant form as
follows:

(x, y) = xTKy = ( x1 x0 x−1 )

( 0 0 1
0 −1 0
1 0 0

)(
y1

y0

y−1

)
= x1y−1 + x−1y1− x0y0. (2.1)

Note that the eigenvalues ofK are indeed +1,−1,−1.
The natural three-dimensional representation ofo(2, 1) is defined using the matrixK

chosen in (2.1),

o(2, 1) = {X ∈ R3×3 | XK +KXT = 0}. (2.2)

Thus a generic element ofo(2, 1) is of the form(
b0 b1 0
b−1 0 b1

0 b−1 −b0

)
b1, b0, b−1 ∈ R. (2.3)

Putting one of the parameters equal to one and the others equal to zero, we have a basis of
o(2, 1) as

B0 =
( 1 0 0

0 0 0
0 0 −1

)
B1 =

( 0 1 0
0 0 1
0 0 0

)
B−1 =

( 0 0 0
1 0 0
0 1 0

)
. (2.4)
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The commutation relations and the Casimir operator are, then, respectively

[B0, B1] = B1 [B0, B−1] = −B−1 [B1, B−1] = B0 (2.5)

C = B1B−1 +B−1B1 +B2
0 . (2.6)

The firstZ2-grading ofo(2, 1) is the decomposition of the algebra into eigenspaces of the
transformation( 1 0 0

0 −1 0
0 0 1

)(
b0 b1 0
b−1 0 b1

0 b−1 −b0

)( 1 0 0
0 −1 0
0 0 1

)
=
(

b0 −b1 0
−b−1 0 −b1

0 −b−1 −b0

)
.

Clearly the eigenvalues are±1. Thus the eigenspacesL0 andL1 corresponding to eigenvalues
+1 and−1 respectively are generated by

L0 = {B0} L1 = {B1, B−1}. (2.7)

The secondZ2-grading ofo(2, 1) is the decomposition of the algebra into the eigenspaces
of the transformation( 0 0 1

0 −1 0
1 0 0

)(
b0 b+ + b− 0

b+ − b− 0 b+ + b−
0 b+ − b− −b0

)(0 0 1
0 −1 0
1 0 0

)

=
( −b0 −b+ + b− 0
−b+ − b− 0 −b+ + b−

0 −b+ − b− b0

)
.

Using again the notations of (2.4), we have

L0 = {B1− B−1} L1 = {B0, B1 +B−1}. (2.8)

The gradings (2.7), (2.8) are non-equivalent, for example, because the subspaceL0 in (2.7)
corresponds to a non-compact group, while it corresponds to a compact group (2.8).

TheZ2-grading (2.7) can be refined into aZ3 one by splitting the two-dimensional subspace
into two. For that we use an automorphism of order 3. Denotingω = e2π i/3, we have(
ω 0 0
0 1 0
0 0 ω2

)(
b0 b1 0
b−1 0 b1

0 b−1 −b0

)(
ω2 0 0
0 1 0
0 0 ω

)
=
(

b0 ωb1 0
ω2b−1 0 ωb1

0 ω2b−1 −b0

)
.

The grading subspaces corresponding to the 0th, 1st, and 2nd power ofω respectively are
generated by

L0 = {B0} L1 = {B1} L−1 = {B−1}. (2.9)

All three subspaces are of dimension one, hence the grading cannot be further refined. It is
said that such a grading is fine.

For the refinement of (2.8) we use the groupZ2 × Z2 built from the grading groups of
(2.7) and (2.8). Indeed, the automorphisms given by the matrices( 1 0 0

0 −1 0
0 0 1

) (0 0 1
0 −1 0
1 0 0

)
commute so that they can be used simultaneously for the grading. It is convenient to introduce
the following generators labelled by two component subscripts:

C10 = B0 C11 = B1 +B−1 C01 = B1− B−1. (2.10)

TheZ2×Z2-grading decomposeso(2, 1) into the sum of three one-dimensional subspaces,

L10 = {C10} L11 = {C11} L01 = {C01}. (2.11)
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During the commutation the subscripts are added componentwise mod 2.
The non-equivalence of the gradings (2.9) and (2.11) follows, for example, from the fact

that that the grading (2.11) is generated by semisimple elements, while in the grading (2.9)
two of the generators are nilpotent.

Every other grading ofo(2, 1) by cyclic groups is equivalent under the action of the Lie
groupo(2, 1) to one of the gradings above.

3. The Lie algebrae(2, 1) and its gradings

The Lie algebrae(2, 1) is the semidirect sum ofo(2, 1) and the three-dimensional Abelian
ideal of translations in space and time. Its generic element can be faithfully represented by

b0 b1 0 x1

b−1 0 b1 x0

0 b−1 −b0 x−1

0 0 0 0

 . (3.1)

The generators ofe(2, 1) can be chosen as

B1 =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 B0 =


1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

 B−1 =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0



X1 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 X0 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 X−1 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .
Their commutation relations then are

[B0, B1] = B1

[B0, X1] = X1

[B1, X1] = 0

[B−1, X1] = X0

[B0, B−1] = −B−1

[B0, X0] = 0

[B1, X0] = X1

[B−1, X0] = X−1

[B1, B−1] = B0

[B0, X−1] = −X−1

[B1, X−1] = X0

[B−1, X−1] = 0.

The algebrae(2, 1) carries a naturalZ2-grading which reflects its semidirect product
structure. Such a grading is the eigenspace decomposition of the following transformation of
order 2:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



b0 b1 0 x1

b−1 0 b1 x0

0 b−1 −b0 x−1

0 0 0 0




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



=


b0 b1 0 −x1

b−1 0 b1 −x0

0 b−1 −b0 −x−1

0 0 0 0


so that we have the grading subspaces generated by

L0 = {B0, B1, B−1} L1 = {X0, X1, X−1} (3.2)

belonging to the eigenvalues 1 and−1 respectively. We mention that in physical terms this
grading is produced by the operatorsPT , i.e. parity times the time reversal.
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HereL0 is the subalgebrao(2, 1) andL1 is its irreducible three-dimensional representation
space. The linear transformations ofL0 act onL1 by means of commutation (adjoint action).
In particular,

I1 = X1X−1 +X−1X1−X2
0

is the invariant form because

[L0, X1X−1 +X−1X1−X2
0] = 0

whereL0 stands for any element ofL0. The other Casimir operator ofe(2, 1) is

I2 = B0X0 +X0B0 +B1X−1 +X−1B1− B−1X1−X1B−1.

The automorphisms ofo(2, 1) act also on the representation spaceL1. The corresponding
eigenspace decomposition is the simultaneous grading ofo(2, 1) and of its representation
space spanned byX1, X0, X−1. Thus theZ2- andZ3-gradings ofo(2, 1) are extended to
e(2, 1). More precisely, one has

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1



b0 b1 0 x1

b−1 0 b1 x0

0 b−1 −b0 x−1

0 0 0 0




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1



=


b0 −b1 0 x1

−b−1 0 −b1 −x0

0 −b−1 −b0 x−1

0 0 0 0

 ;


0 0 1 0
0 −1 0 0
1 0 0 0
0 0 0 1




b0 b+ + b− 0 x + z
b+ − b− 0 b+ + b− y

0 b+ − b− −b0 x − z
0 0 0 0




0 0 1 0
0 −1 0 0
1 0 0 0
0 0 0 1



=


−b0 −b+ + b− 0 x − z

−b+ − b− 0 −b+ + b− −y
0 −b+ − b− b0 x + z
0 0 0 0

 ;

ω 0 0 0
0 1 0 0
0 0 ω2 0
0 0 0 1



b0 b1 0 x1

b−1 0 b1 x0

0 b−1 −b0 x−1

0 0 0 0



ω2 0 0 0
0 1 0 0
0 0 ω 0
0 0 0 1



=


b0 ωb1 0 ωx1

ω2b−1 0 ωb1 x0

0 ω2b−1 −b0 ω2x−1

0 0 0 0

 .
Here the three gradings decomposee(2, 1) into

Z2 : L0 = {B0, X1, X−1} L1 = {B1, B−1, X0}. (3.3)

Z2 : L0 = {B1− B−1, X1 +X−1} L1 = {B0, B1 +B−1, X0, X1−X−1}. (3.4)

Z3 : L0 = {B0, X0} L1 = {B1, X1} L−1 = {B−1, X−1}. (3.5)

The gradings can be further refined using two gradings simultaneously. That is possible when
two grading automorphisms commute. Thus we can combine any twoZ2 gradings (3.2)–(3.4)
into aZ2×Z2 grading. The grading subspaces are then labelled by two component subscripts,
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each read mod 2:

L00 = {X1 +X−1} L10 = {B1− B−1}
L01 = {B0, X1−X−1}L11 = {X0, B1 +B−1}. (3.6)

L00 = {B0} L10 = {B1, B−1} L01 = {X1, X−1} L11 = {X0}. (3.7)

L01 = {B0, X0} L11 = {B1 +B−1, X1−X−1} L10 = {B1− B−1, X1 +X−1}. (3.8)

Similarly aZ2 × Z3-grading is obtained by combining either (3.2) or (3.3) with (3.5):

L00 = {B0} L01 = {X1} L02 = {X−1}
L10 = {X0} L11 = {B1} L12 = {B−1}.

(3.9)

Finally, one can combine all threeZ2-gradings. The result is a fineZ2×Z2×Z2-grading.
Its subspaces are labelled by three subscripts each read mod 2.

L010= {B0} L011= {X0} L110= {B1 +B−1},
L111= {X1−X−1} L100= {B1− B−1} L101= {X1 +X−1}.

(3.10)

It was pointed out in the introduction that the grading labels and the specific
automorphisms, whose eigenvalues determine the label, are far from unique. Above we have
an example of aZ2×Z3-grading. However, an identical decomposition ofe(2, 1) is obtained
as aZ6-grading in the following way, usingκ = √ω = e2π i/6.
κ2 0 0 0
0 1 0 0
0 0 κ4 0
0 0 0 κ3



b0 b1 0 x1

b−1 0 b1 x0

0 b−1 −b0 x−1

0 0 0 0



κ4 0 0 0
0 1 0 0
0 0 κ2 0
0 0 0 κ3



=


b0 κ2b1 0 κ5x1

κ4b−1 0 κ2b1 κ3x0

0 κ4b−1 −b0 κx−1

0 0 0 0

 .
The eigenspaces are now labelled by sixth roots of one:

L0 = {B0} L1 = {X−1} L2 = {B1}
L3 = {X0} L4 = {B−1} L5 = {X1}.

(3.11)

4. Graded contractions ofe(2,1): formulation of the problem

In previous sections we have found explicit grading decompositions of the Lie algebrae(2, 1).
Two of them are not only fine, i.e. cannot be further refined, but also decompose the algebra
into one-dimensional subspaces. Thus they define bases (up to a normalization) of the algebra.
These bases are inherently preferred by the structure of the algebra. There is no other basis with
the grading property which would not be equivalent to one of these. In the commutation of such
basis elements, the result is a multiple of another basis element and not a linear combination
of several of them.

Consider a general grading decomposition of a Lie algebra,L0 + L1 + · · · + LN−1, into
the sum of eigenspaces of an automorphism of orderN of the Lie algebra [21, 24]. Then
symbolically we write

0 6= [Lj , Lk] = Lj+k (j, k modN). (4.1)

The symbolics of the notation is in that it is a shorthand for a commutator of any element of
Lj with any element ofLk, the result being an element ofLj+k. The inequality to zero means
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that not all commutators are zero. A deformation of the commutation relations, denoted by
[Lj , Lk]ε, is defined using the undeformed commutator and the parametersεjk:

[Lj , Lk]ε := εjk[Lj , Lk] = εjkLj+k (j, k,m modN). (4.2)

Clearly deformed commutators also have the grading property (4.1).
It was explained elsewhere [21, 24] that the result of such a deformation is a Lie algebra

provided the deformation parameters satisfy the algebraic equations

εjk = εkj (j, k,m modN) (4.3)

εjkεm,j+k = εkmεj,k+m = εmjεk,j+m (4.4)

following respectively from the requirements of antisymmetry of the commutation operation
and from the Jacobi identities.

A solution of our contraction problem is a set of parameters{εjk} satisfying (4.3) and
(4.4). It is convenient to visualize and to display the parameters as a matrix although we do not
have much use for the conventional matrix operations in this context. There are always two
trivial solutions which we disregard in most situations: (i) allεjk = 1 (the algebra remains the
same); and (ii) allεjk = 0 (the resulting algebra is Abelian).

Two types of solutions of equations (4.3) and (4.4) can exist: continuous and discrete
ones. Consider for example a relation obtained from (4.4) forj = i, k = −i,m = 0,

εi−i (ε0i − ε0−i ) = 0.

If we haveε0i = ε0−i = λ, thenλ (or εi−i) can vary continuously from its original valueλ = 1
toλ = 0. However, if we haveε0i 6= ε0−i , thenεi−i must be zero and cannot vary continuously
to zero. As a matter of fact the ‘original’ valueεi−i = 1 is not allowed in this case, so the term
‘deformation’ of a Lie algebra is more appropriate than ‘contraction’ for discrete solutions of
(4.4).

In some cases we use more than one cyclic group to label the grading subspaces. Then
the subscripts are multicomponent. Thus, for aZ2×Z2×Z2-grading, one should readεm,j+k

asε(m1,m2,m3)(j1+k1,j2+k2,j3+k3) where the brackets and commas are used to avoid ambiguity in
separating the two labels and their components.

An all-important modification of the contraction equations (4.3), (4.4) arises when some
commutators, say [Lj , Lk], are identically zero before the deformation. Thenεjk is not defined
and all equations involvingεjk have to be removed from (4.3), (4.4). Thus, for example, for
both fine gradings ofe(2, 1), the ‘diagonal’ parametersεjj are not defined for anyj .

Solutions of the contraction equations then provide the commutation relations of the
deformed Lie algebra. Two solutions{εjk} and {ε′jk} for a real Lie algebra are equivalent
provided we have

ε′jk =
aj+k

ajak
εjk (4.5)

for all j, k, whereaj are some non-zero real numbers.
Solving the appropriate system of contraction equations and selecting among the results

a set of non-equivalent solutions, is always a possible strategy for finding all contractions
which preserve the chosen grading. However in some cases like the Lie algebrae(2, 1), it is
advantageous to exploit particular features of the algebra at hand, namely its structure of a
semidirect sum. It is the way we have proceeded in this article. Let us now say more about it
in general.

The idea is to split the bigger problem (e(2, 1) contractions) into two smaller ones: (i)
contractions of the subalgebrao(2, 1) of ‘homogeneous’ transformations, and (ii) contractions
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of the action ofo(2, 1) on its three-dimensional representation space which in this case is the
‘inhomogeneous’ part ofe(2, 1), generated byX1, X0, X−1.

A general method for simultaneous graded contractions of a Lie algebra and any of its
representations was formulated in [23, 24]. Here we apply it toe(2, 1). Consider one of the
gradings in which the Abelian subalgebra is split into separate grading subspaces, for example
(3.8) or (3.10). The rows and columns of the corresponding grading parameter matrix(εij )

can be rearranged into a matrix of 3× 3 blocks(
E P

PT 0

)
(4.6)

whereE = ET contains the contraction parameters of the subalgebrao(2, 1),P consists of the
contraction parameters betweeno(2, 1) and the translations,PT is present because the overall
matrix has to be symmetric (4.3) but otherwise contains the same parameters asP , and the
presence of a 0 matrix reflects the Abelian nature of the translation subalgebra. The latter is
the special feature ofe(2, 1) which makes possible the two-stage solution of the contraction
equations.

The first step is to consider only the subset of them containing parameters fromE. That
is really just the contraction ofo(2, 1). With those parameters fixed (denoting them as before
εij ), solve the rest of the equations containing parameters fromP (denoting the parameters by
ψjk in order to make the distinction). There is an important difference between parameters
εij andψjk. In generalψjk 6= ψkj and the symmetry of the matrix (4.6) is assured by the
simultaneous presence ofP andPT .

5. Analysis ofZ3 toroidal contractions

5.1. The Jacobi identities

In this section we investigate in detail the toroidal contractions ofe(2, 1), corresponding to the
Z3 toroidal grading ofo(2, 1), together with the grading induced on the representation space of
translations. In other words we decomposee(2, 1) as in (3.4), but distinguish the coefficients
εik andψik as in (4.6).

The standard physical basis of the Lie algebrae(2, 1) consists of the rotation generator
L3, the two Lorentz boostsK1 andK2, and the three space-time translations,P1, P2 andP0.
The three grading subspaces are chosen as:

0 :K1 = B0 P2 = X0

1 :K2 − L3 = B1 P0 + P1 = X1

−1 :K2 +L3 = B1 P0 − P1 = X−1.

(5.1)

Thee(2, 1) commutation relations in this basis are given in the following table:

B0 B1 B−1 X0 X1 X−1

B0 0 B1 −B−1 0 X1 −X−1

B1 −B1 0 B0 X1 0 X0

B−1 B−1 −B0 0 X−1 X0 0
[Xµ,Xν ] = 0.

(5.2)

The deformed commutation relations are

[Bi, Bk]ε = εik[Bi, Bk] (5.3)

[Bi,Xα]ε = ψiα[Bi,Xα]. (5.4)
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The matrixε ∈ R3×3 is symmetric,εik = εki . The matrixψiα has no definite symmetry
properties.

The Jacobi identities must be satisfied by the deformed algebra (and are satisfied by the
original one). This imposes bilinear relations on the contraction matricesε andψ , namely

εi,k+`εk` = εk,i+`εi` = ε`,i+kεik (5.5)

εikψi+k,α = ψi,k+αψkα = ψiαψk,i+α. (5.6)

More specifically, relations (5.5) and (5.6) can be rewritten as

ε1−1(ε01− ε0−1) = 0 (5.7)

ψ1−1(ε01− ψ0−1) = 0 ψ−11(ε0−1− ψ01) = 0 (5.8)

ψ10(ε10− ψ01) = 0 ψ−10(ε0−1− ψ0−1) = 0 (5.9)

ε1−1ψ01− ψ−11ψ10 = 0 ε1−1ψ0−1− ψ1−1ψ−10 = 0 (5.10)

ψ−11ψ10− ψ1−1ψ−10 = 0. (5.11)

5.2. Solution of the contraction equations

Our task now is to solve the relations (5.7)–(5.11) and then analyse all limits in which one or
more of the constantsεµν orψµν are set equal to zero in a manner compatible with the above
relations.

We start with relation (5.7). It has four classes of solutions. Indeed, the matrix

ε =
(
ε00 ε01 ε0−1

ε01 ε11 ε1−1

ε0−1 ε1−1 ε−1−1

)
(5.12)

can have one of the following forms:

ε̇1 =
( ∗ 1 a

1 ∗ 0
a 0 ∗

)
ε2 =

( ∗ 0 0
0 ∗ 1
0 1 ∗

)
(5.13)

ε3 =
( ∗ 0 0

0 ∗ 0
0 0 ∗

)
ε4 =

( ∗ 1 1
1 ∗ 1
1 1 ∗

)
. (5.14)

The matricesε1 and ε2 correspond to non-trivial contractions of 0(2, 1), ε3 and ε4 to
trivial ones. The asterisks in (5.13) and (5.14) are arbitrary numbers. The corresponding
matrix elements multiply zeros in the commutation table.

Once relation (5.7) is solved, we can systematically solve the remaining ones, namely
(5.8)–(5.11), either by hand, or in a computer assisted manner. For each matrixε we shall
present the possible matricesψ , putting

ψ =
( ∗ b c

λ ∗ µ

ρ σ ∗

)
. (5.15)

From the commutation table (5.2) we see that the parametersb andc are eigenvalues of the
elementB0. The entire first row inε andψ can be simultaneously scaled (by redefiningB0)
but is otherwise fixed. The parametersλ, µ, ρ, σ , on the other hand, are either equal to zero,
or can be independently scaled to the value 1 (again by redefining elements of the basis after
contraction).

Let us run through the individual cases, listing only mutually inequivalent ones.
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ε = ε1: The constantsa, b andc cannot be scaled. We list all possible forms of the matrix
ψ , all unspecified constants are arbitrary:

A1. λ = µ = ρ = σ = 0

A21. λ = µ = σ = 0 ρ = 1 c = a
A22. µ = ρ = σ = 0 λ = 1 b = 1

A31. λ = ρ = σ = 0 µ = 1 c = 1

A32. λ = µ = ρ = 0 σ = 1 b = a
A4. λ = ρ = 1 µ = σ = 0 b = 1 c = a
A51. λ = µ = 1 ρ = σ = 0 b = c = 1

A52. σ = ρ = 1 λ = µ = 0 b = c = a
A6. µ = σ = 1 λ = ρ = 0 a = b c = 1.

(5.16)

All algebras obtained by the above contractions will be solvable, but not nilpotent.
ε = ε2: In this case relations (5.8)–(5.11) imposeb = c = 0 in (5.15). Hence all

contracted Lie algebras will be nilpotent.
The inequivalent possibilities forψ are

A7. λ = ρ = 1 µ = σ = 0

A8. λ = µ = 1 ρ = σ = 0

A9. µ = σ = 1 λ = ρ = 0

A10. λ = 1 µ = ρ = σ = 0

A11. λ = ρ = 1 µ = σ = 0.

(5.17)

ε = ε3: Although 0(2, 1) contracts to an Abelian algebra, its action on the translations
can be non-trivial:

A12. b = 1 c 6= 0 λ = µ = ρ = σ = 0

A13. b = 1 c = 0 µ = 1 λ = ρ = σ = 0

A14. b = 1 c = 0 µ = λ = ρ = σ = 0

A15. b = c = 0 λ = ρ = 1 µ = σ = 0

A16. b = c = 0 ρ = σ = 1 λ = µ = 0

A17. b = c = 0 µ = σ = 1 λ = ρ = 0.

A18. b = c = 0 ρ = 1 λ = µ = σ = 0.

(5.18)

ε = ε4: No contraction in the 0(2, 1) subalgebra

A19. b = c = 0 λ = µ = ρ = σ = 0. (5.19)

We have left out the two trivial contractions, obtained forε = ε3, b = c = 0,
λ = µ = ρ = σ = 0 andε = ε4, b = c = 1, λ = µ = ρ = σ = 1, respectively.
The first corresponds to the contractione(2, 1)→ Abelian, the second toe(2, 1)→ e(2, 1).

5.3. Basis-independent identification of Lie algebras

TheZ3 graded contractions ofe(2, 1) lead to a large variety of Lie algebras that are mutually
non-isomorphic. We shall give an overview below, but first we list some classification criteria
[26].

A Lie algebraL is decomposable if it can be written as a direct sum of two (or more)
subalgebras

L = L1⊕ L2 [L1, L1] ⊆ L1 [L2, L2] ⊆ L2 [L1, L2] = 0. (5.20)



816 J Patera et al

We shall present decomposable algebras in an already decomposed form, such that each
component is indecomposable. Further we deal only with indecomposable Lie algebras.

The indecomposable Lie algebras that we obtain are either solvable, or nilpotent (we shall
use the word ‘solvable’ to mean solvable, but not nilpotent).

A solvable Lie algebraL has a uniquely defined nilradicalNR(L), i.e. a maximal nilpotent
ideal [17]. For each indecomposable solvable, or nilpotent Lie algebra we shall list the
dimensions of Lie algebras in three series.

• Thederived series(DS)

L0 = L L1
1 = [L0, L0] Lk = [Lk−1, Lk−1] (5.21)

(the derived series terminates for somek (Lk = 0) for solvable and nilpotent Lie algebras).
• The lower central series(CS)

L(0) = L L(1) = [L(0), L(0)], . . . , L(k) = [L0, Lk−1]. (5.22)

The lower central series terminates (L(k) = 0) for somek for nilpotent Lie algebras, but
not for other solvable ones.

The upper central series(US). We denote the centre of the Lie algebraC(L) and then
introduce a series of ‘higher centres’ ofL, namely

C(L) ⊂ C(2)(L) = C(L/C(L)) ⊂ C(3) = C(L/C(2)(L)) ⊂ . . . . (5.23)

This series terminates for nilpotent Lie algebras withC(k)(L) = L for somek.

5.4. Identification of the contracted Lie algebras

Class I. Solvable indecomposable (SI) (non-nilpotent) Lie algebras. These all come from
contractions characterized byε = ε1 (see equations (5.13) and (5.16)). Their nilradicals are
all five-dimensional. (Below, letters in brackets indicate real free parameters.)

SI1(a). Obtained from (A.4). The nilradical is indecomposable and we have

a 6= 0 DS :(6, 4, 0) CS : (6, 4, 4) US : (0)

a = 0 DS :(6, 3, 0) CS : (6, 3, 2, 2) US : (1, 2, 2).

SI2(a). Obtained from (A.6). The nilradical is indecomposable, but not isomorphic to NR(SI1).
We have

a 6= 0 DS :(6, 5, 1, 0) CS : (6, 5, 5) US : (1)

a = 0 DS :(6, 3, 1, 0) CS : (6, 3, 3) US : (1, 2, 2).

SI3(a). Obtained from (A.51) and (A.52) for a 6= 0. The nilradical is decomposable,NR(L) =
{B1, X0, X1, X−1} ⊕ {B−1}. We have

DS= (6, 5, 2, 0) CS : (6, 5, 5) US : (0).

SI4(a, b). Obtained from (A.21) with c = a 6= 0,b 6= 0; also from (A.22) with c 6= 0, a 6= 0, c→ b.
The nilradical is decomposable,NR(L) = {X−1, B−1, X0} ⊕ {B1} ⊕ {X1}. We have

DS= (6, 4, 0) CS= (6, 4, 4) US= (0).
SI5(a, b). Obtained from (A.31) with a 6= 0, b 6= 0; also from (A.32) with a 6= 0, c 6= 0, c → b.

The nilradical is decomposable,NR(L) = {X0, B1, X−1)⊕ {X1} ⊕ {B−1}. We have

DS= (6, 5, 1, 0) CS= (6, 5, 5) US= (1, 1).
We see that the above Lie algebras are all mutually non-isomorphic. Only SI4 and SI5 have

isomorphic nilradicals. However, their derived and central series involve different dimensions.
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Class II. Nilpotent indecomposable (NI) Lie algebras. They all come from contractions
associated withε2 (see (5.13) and (5.17)).

NI1. Obtained from (A.7). We have

DS= (6, 3, 0) CS= (6, 3, 0) US= (3, 6).
NI2. Obtained from (A.8). We have

DS= (6, 3, 0) CS= (6, 3, 1, 0) US= (2, 4, 6).
The Lie algebra has a five-dimensional Abelian ideal.

NI3. Obtained from (A.9). We have

DS= (6, 2, 0) CS= (6, 2, 0) US= (2, 6).

Class III. Solvable (non-nilpotent), decomposable (SD). They come from contractions
associated withε1, or ε3. We shall order them according to decomposition pattern.

• Decomposition 6= 5 + 1.

SD1(a, b, c). Obtained from (A.1) withabc 6= 0. The algebra is{B0, B1, B−1, X1, X−1} ⊕ {X0}. The
nilradical{B1, B−1, X1, X−1} of the five-dimensional solvable Lie algebra is Abelian.

SD2(a). Obtained from (A.21) for b = 0, c = a 6= 0 and (A.22) for, a = 0, c 6= 0 orc = 0,a 6= 0.
The nilradical of the five-dimensional solvable Lie algebra is decomposable according to
the pattern 4= 3 + 1.

SD3(b). Obtained from (A.31) with a = 0, b 6= 0 or a 6= 0, b = 0. The nilradical of the
five-dimensional Lie algebra is the same as for SD2(a). The algebras SD2 and SD3 are
however not isomorphic. An isomorphic Lie algebra is obtained from (A32) with a 6= 0,
c = 0.

SD4. Obtained from (A.51) with a = 0. The nilradical of the five-dimensional solvable Lie
algebra{B0, B1, X1, X−1, X0} is indecomposable.

• Decomposition 6= 4 + 2.

SD5. Obtained from (A.52) with a = b = c = 0. The algebra{B0, B1} is solvable, the
four-dimensional algebra{B−1, X1, X0, X−1} is nilpotent.

• Decomposition 6= 4 + 1 + 1.

SD6(a, b). Obtained from (A.1) when one of the parametersa, b, c is zero, the other two are not, e.g.
{B0, B1, B−1, X1} ⊕ {X0} ⊕ {X−1}. The nilradical of the four-dimensional solvable Lie
algebra is Abelian.

SD7. Obtained from (A.22) with a = c = 0. The nilradical of the four-dimensional solvable Lie
algebra is non-abelian (the Heisenberg algebra). An isomorphic Lie algebra is obtained
from (A.31) with a = b = 0.

• Decomposition 6= 3 + 3.

SD8(b). Obtained from (A2.1) for a = 0. The algebra{B0, B1, X1} is solvable,{B−1, X−1, X0} is
nilpotent. An isomorphic algebra is obtained from (A3.2) with a = 0, c 6= 0.

• Decomposition 6= 3 + 2 + 1.

SD9. Obtained from (A2.1) with a = 0, b = 0. We have{B1, X−1, X0} ⊕ {B0, B1} ⊕ {X1}}.
The first algebra is nilpotent, the second solvable. An isomorphic algebra is obtained from
(A3.2) with a = c = 0 and from (A13).
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• Decomposition 6= 3 + 1 + 1 + 1.

SD10(a). Obtained from (A1) with two of the componentsa, b, c equal to zero, one not. An
isomorphic algebra is obtained from (A12).

• Decomposition 6= 2 + 1 + 1 + 1 + 1.

SD11. Obtained from (A1) witha = b = c = 0 and also from (A14).

Class IV. Nilpotent, decomposable.
Such algebras can correspond toε = ε2 or ε = ε3.

• Decomposition 6= 5 + 1.

ND1. From (A.10) we get

{B0, B1, B−1, X0, X1} ⊕ {X−1}.
The invariant series for the first algebra are

DS(5, 2, 0) CS= (5, 2, 0) US= (2, 5).
An isomorphic Lie algebra arises in the case A.15.

ND2. From (A.17) we get

{B1, B−1, X1, X−1, X0} ⊕ {B0}
with

DS= (5, 1, 0) CS= (5, 1, 0) US= (1, 5).
• Decomposition 6= 4 + 1 + 1.

ND3. From (A.16) we have

{B1, X0, X1, X−1} + {B0} + {B−1}
with

DS= (4, 2, 0) CS= (4, 2, 1, 0) CS= {1, 2, 4}.
• Decomposition 6= 3 + 1 + 1 + 1.

ND4. From (A.11) we have

{B0, B1, B−1} ⊕ {X0} ⊕X1⊕X−1}.
An isomorphic Lie algebra is obtained from (A.18).

Class V. Not solvable, decomposable.

NS1. ε = ε4, case (A.19) yields

{B0, B1, B−1} + {X0} ⊕ {X1} ⊕ {X−1}.
In this case{B0, B1, B−1} is sl(2,R) (acting trivially on the translations).

We note that above we have included both discrete and continuous contractions. The
continuous ones are those corresponding to

ε1 with a = 1 b = c = 1

ε2 with b = c = 0

ε3 with b = c = 0.
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6. Contractions corresponding to the non-toroidal fine grading

6.1. Basis of the Lie algebra and the Jacobi identities

Let us consider theZ2× Z2 grading (3.9) ofe(2, 1) and again follow the method indicated in
equation (4.6). To simplify notations we shall denote the grading spaces as follows

A1 ≡ L01 ∼ {K1, P2} A2 ≡ L11 ∼ {K2, P1} A3 ≡ L10 ∼ {L3, P0}. (6.1)

The grading is then cyclic

[A1, A2] ⊆ A3 cyclic. (6.2)

Thee(2, 1) commutation relations in this ‘physical’ basis are

K1 K2 L3 P2 P1 P0

K1 0 −L3 −K2 0 P0 P1

K2 L3 0 K1 P0 0 P2

L3 K2 −K1 0 −P1 P2 0

(6.3)

The deformed commutation relations are given by two matrices

ε =
( ∗ ε12 ε13

ε12 ∗ ε23

ε13 ε23 ∗

)
ψ =

( ∗ ψ12 ψ13

ψ21 ∗ ψ23

ψ31 ψ32 ∗

)
. (6.4)

The Jacobi identity for{K1,K2, L3} imposes no constraints on the matrixε. The Jacobi
identities involving two elements ofo(2, 1) and one translationPµ imply

ε13ψ23− ψ32ψ13 = 0 ε13ψ21− ψ12ψ31 = 0 (6.5)

ε23ψ13− ψ31ψ23 = 0 ε23ψ12− ψ21ψ32 = 0 (6.6)

ε12ψ32− ψ23ψ12 = 0 ε12ψ31− ψ13ψ21 = 0. (6.7)

6.2. Relation between Inönü–Wigner and graded contractions ofo(2,1)

The 0(2, 1) contraction matrixε is an arbitrary symmetric matrix. Hence its introduction
provides an embedding of the algebra 0(2, 1) into a continuous family of three-dimensional
Lie algebras. Let us consider the different possibilities that occur.

(1) ε12ε23ε13 6= 0.
By recalling the basis elementsK1,K2 andL3 we can transformε in this case into e.g.

ε =
( ∗ κ1 1
κ1 ∗ κ0

1 κ0 0

)
κ1 = ±1 κ0 = ±1

κ0 = sign(ε23ε13) κ1 = signε12ε13.

(6.8)

The corresponding ‘deformed’ Lie algebra iso(3) for κ1 = −1, κ0 = 1 ando(2, 1) for
any other choice of signs. An Inönü–Wigner contraction would in this case simply be a
change of basis ino(2, 1) and would implyε23ε13 > 0, ε12ε13 > 0 (i.e.κ0 = κ1 = 1).

(2) One matrix elementεik vanishes.
(2a) ε12 = 0, ε13 = 1, ε23 = ±1.
The values ofε13 andε23 are a result of a recalling. The two signs ofε23 correspond to
the contractions

o(2, 1)→ e(2) ε23 = 1

o(2, 1)→ e(1, 1) ε23 = −1
(6.9)

where e(2) and e(1, 1) are the Euclidean and pseudo-Euclidean Lie algebras in two
dimensions, respectively.
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(2b) ε13 = 0, ε12 = 1, ε23 = ±1.

In this case we have

o(2, 1)→ e(1, 1) ε23 = 1

o(2, 1)→ e(2) ε23 = −1.
(6.10)

Inönü–Wigner contractions would lead toε23 = 1 in both cases above.
(3) Two of the matrix elementsεik vanish.

In this case all three possible choices of two vanishing elements are equivalent. Moreover,
the graded contractions are equivalent to the Inönü–Wigner ones. The contraction leads
to the Heisenberg algebra, i.e. we have

[K1,K2]ε = L3 [L3,K1]ε = [L3,K2]ε = 0. (6.11)

(4) All threeεik vanish.
The obtained algebra is Abelian.

6.3. Solution of the contraction equations

Let us now solve equations (6.5)–(6.7) for the matrix elements of the matrixψ in equation (6.4).
We shall first specify the choice of the matrixε, as discussed in section 6.2. To simplify
notations, we relabel the matrixψ as

ψ =
( ∗ λ µ

ν ∗ ρ

σ τ ∗

)
. (6.12)

Below we give all inequivalent solutions forε andψ , already simplified by recalling and
reordering basis elements of the contracted Lie algebra, whenever necessary.

(1)

ε =
( ∗ 0 1

0 ∗ κ0

1 κ0 ∗

)
κ0 = ±1 (6.13)

A1. λ = ν = 0, µ = σ = 1, ρ = τ = κ0

A2. µ = ρ = 0, λ = ν = σ = 1, τ = κ0

A3. λ = µ = ν = ρ = 0, σ = −a, τ = κ1a, a 6= 0, ε1 = ±1

A4. λ = µ = ν = ρ = 0, σ = 1, τ = 0, (or σ = 0, τ = 1)

A5. λ = µ = ν = ρ = 0, σ = τ = 0.

(2)

ε =
( ∗ 1 0

1 ∗ κ0

0 κ0 ∗

)
κ0 = ±1 (6.14)

B1. µ = σ = 0, λ = ν = 1, ρ = τ = κ0

B2. λ = τ = 0, µ = ν = σ = 1, ρ = κ0

B3. λ = µ = σ = τ = 0, ν = a, ρ = κ1a, a 6= 0, κ1 = ±1

B4. λ = µ = σ = τ = 0, ν = 1, ρ = 0(or ν = 0, ρ = 1)

B5. λ = µ = σ = τ = 0, ν = ρ = 0.
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(3)

ε =
( ∗ 0 0

0 ∗ 1
0 1 ∗

)
(6.15)

C1. λ = µ = ν = σ = 0, ρ = τ = 1

C2. λ = µ = ρ = τ = 0, ν = σ = 1

C3. λ = µ = ν = ρ = 0, σ = ε0, τ = 1, ε0 = ±1

or λ = µ = σ = τ = 0, ν = ε0, ρ = 1, ε0 = ±1

C4. λ = µ = ν = σ = 0, ρ = 1, τ = 0, ( or ρ = 0, τ = 1)

C5. λ = µ = ρ = τ = 0, ν = 1, σ = 0, ( or ν = 0, σ = 1)

C6. µ = ρ = σ = 0, λ = ν = τ = 1, ( or λ = ν = τ = 0, µ = ρ = σ = 1)

C7. All elementsψik = 0.

(4)

ε =
( 0 0 0

0 0 0
0 0 0

)
(6.16)

D1. λ = µ = ν = σ = 0, ρ = τ = 1, (or λ = ν = ρ = τ = 0, µ = σ = 1

orµ = ρ = σ = τ = 0, λ = ν = 1)

D2. ν = ρ = σ = τ = 0, λ = 1, µ = ε0, ε0

= ± 1(or any permutation of rows inψ)

D3. λ = µ = ρ = τ = 0, ν = σ = 1( or any permutation of columns inψ)

D4. One element inψ equal to 1, all others zero (e.g.λ = 1,µ = ν = ρ = σ = τ = 0)

D5. All elementsψik = 0.

(5)

ε =
( ∗ κ1 1
κ1 0 κ0

1 κ0 ∗

)
(6.17)

E1. ψ = ε
E2. ψ = 0.

In each case equations (6.5)–(6.7) expressing the Jacobi identities have two ‘trivial’
solutions:ψ = ε andψ = 0. We have included them above.

6.4. Identification of the contracted Lie algebras

We shall follow the criteria outlined in section 5.3. The list given below is a continuation of
that in section 5.4 using the same notations.

Class I. Solvable indecomposable SI (non-nilpotent) Lie algebras.

SI6(κ0). Obtained from (A1) and (B1).

The nilradical is five-dimensional and indecomposable and we have

DS : (6, 4, 0) CS : (6, 4, 4, . . .) US : (0).
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For κ0 = 1 in the case (A1) this is the inhomogeneous Galilei algebra. Its usual physical
realization by vector fields is

L3→ L = y∂x − x∂y K1→ B1 = −t∂x K2→ B2 = −t∂y
P0 = ∂t P1 = ∂x P2 = ∂y.

(6.18)

Forκ0 = +1 in the case (B1) we obtain an inhomogeneous pseudo-Galilei Lie algebra that can
be realized e.g. as

K2→ K = y∂t + t∂y K1→ 51 = x∂t L3→ 52 = x∂y
P0 = ∂t P1 = ∂x P2 = ∂y.

(6.19)

The case (A1) withκ0 = −1 correspond to (6.19), (B1) withκ0 = −1 to (6.18).
Furthermore, algebra (6.19) is isomorphic to algebra SI1(a = 1) obtained from the toroidal

grading. Algebra (6.18) is obtained from the non-toroidal grading only.

SI7(ε0). Obtained from (A2) and (B2). The nilradical is five-dimensional and indecomposable and
the invariant series are

DS : (6, 5, 1, 0) CS : (6, 5, 5, . . .) US : (1).

For κ0 = −1 this algebra is isomorphic to SI2. Forκ0 = +1 it is not obtained from a
toroidal grading.

Class II. Nilpotent indecomposable (NI) Lie algebras.

NI4. Obtained from (C1). We have

DS : (6, 2, 0) CS : (6, 2, 0) US : (2, 6).

Isomorphic to NI3.
NI5. Obtained from (C2). We have

DS : (6, 3, 0) CS : (6, 3, 0) US : (3, 6).

Isomorphic to NI1.
NI6. Obtained from (C6). We have

DS : (6, 3, 0) CS : (6, 3, 1, 0) US : (2, 4, 6).

This algebra has only a four-dimensional Abelian ideal and is hence not isomorphic to
NI2, even though all dimensions of their invariant series coincide.

Class III. Solvable (non-nilpotent) decomposable (SD)

• Decomposition 6= 5 + 1.

SD12(κ0, κ1). Obtained from (A3) and (B3). The algebra obtained from (A3) is{K1,K2, L3, P1, P2} ⊕
P0. The five-dimensional algebra has a four-dimensional Abelian nilradical
{K1,K2, P1, P2}. For κ0 = κ1 = −1 this is isomorphic to SD1(a = 1, b = 1, c = 1).
Otherwise it is new. The contracted algebra (B3) is obtained by interchanging{L3, P0} ↔
{K2, P1}, κ0↔ −κ0, κ1↔ −κ1.

The dimensions in the invariant series of the five-dimensional Lie algebra are

DS : (5, 4, 0) CS : (5, 4, 4, . . .) US : (0).
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SD13(ε0). Obtained from (A4) and (B4) with{L3, P0, κ0} ↔ {K2, P1,−κ0}). The five-dimensional
Lie algebra {K1,K2, L3, P1, P2} (for (A4)) again has a four-dimensional Abelian
nilradical{K1,K2, P1, P2}, but the invariant series correspond to

DS : (5, 3, 0) CS : (5, 3, 2, 2, . . .) US : (1, 2).

An isomorphic Lie algebra is obtained from (C3) with{K1,K2} ↔ {P1, P2}.
• Decomposition 6= 3 + 1 + 1 + 1.

SD14(κ0). Obtained from (A5). We have the algebra{K1,K2, L3} ⊕ {P0} ⊕ {P1} ⊕ {P2} with

[L3,K1] = K2 [L3,K2] = −ε0K1 [K1,K2] = 0

so the three-dimensional Lie algebra ise(2) for κ0 = 1, e(1, 1) for κ0 = −1. The same
Lie algebra is obtained fromB5, with {L3, κ0} ↔ {K2,−κ0}. The case (D2) leads to an
isomorphic Lie algebra with(K1,K2)↔ (P1, P2), or {L3,K1} → {P0, P2}.

Class IV. Nilpotent, decomposable (ND).

• Decomposition 6= 5 + 1.

ND5. The cases (C4), (C5) and (D3) all lead to isomorphic Lie algebras in which the five-
dimensional nilpotent subalgebra has a five-dimensional Abelian ideal and the invariant
series satisfy

DS : (5, 2, 0) CS : (5, 2, 0) US : (2, 5).

• Decomposition 6= 3 + 1 + 1 + 1.

ND6. The cases are (C6) and (D4) and the obtained three-dimensional Lie algebra is the
Heisenberg one.

• Decomposition 6= 6× 1.

The case D5 leads to the Abelian Lie algebra.

Class V. Nonsolvable Lie algebras (NS). These correspond to the cases (E1) and (E2).

NS3. The case (E1) forκ0 = κ1 = 1 is the trivial contractione(2, 1) → e(2, 1). We have
e(2, 1)→ e(3) for κ0 = 1, κ1 = −1; e(2, 1)→ e(2, 1) otherwise.

NS4. The case (E2) leads to the decompositione(2, 1) → o(2, 1) + 3A1 for (κ0, κ1) =
(1, 1), (−1,−1), (−1, 1) and too(3) + 3A1 for (κ0, κ1) = (1,−1).

7. Conclusions

TheZ3 grading (3.5) used in section 5 is not a fine one: it can be further refined into theZ2×Z3

grading (3.5), or equivalently theZ6 grading (3.11). We use the method represented by eq.
(4.6) which is equivalent to taking the fine grading. We have obtained 22 types of contracted Lie
algebras, including five indecomposable solvable non-nilpotent ones, three indecomposable
nilpotent ones, nine decomposable solvable non-nilpotent ones, four decomposable nilpotent
ones and one that is not solvable (the direct sum ofo(2, 1) and a three-dimensional Abelian
algebra).

Among these algebras, some are already obtained from a coarser grading, namely aZ2

one with

L0 ∼ {B0, X0} L1 ∼ {B1, B−1, X1, X−1}. (7.1)
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The corresponding contracted Lie algebras are obtained from those in our list by settinga = 1,
b = c, λ = ρ throughout. We obtain the solvable indecomposable algebras SI1(a = 1),
SI2, SI3(a = 1), SI4(a = 1, b = 1), SI5(a = 1, b = 1). Similarly, the indecomposable
nilpotent Lie algebras NI1 and NI3 (but not NI2 correspond to the grading (7.1). Among the
decomposable ones theZ2 grading (7.1) provides SD1(a = 1, b = c 6= 0), SD7, SD5(c = 0),
SD9(a = 1), ND2, ND4, and NS1.

The matrixε1 in equation (5.13) corresponds to a continuous contraction fora = 1 only.
In this caseo(2, 1) contracts to the Lie algebra of the pseudo-Euclidean groupP(1, 1) (i.e.B1

andB−1 commute like translations,B0 continues to act like a Lorentz boost). Equation (5.16)
shows that the obtained solvable Lie algebra can act in many different ways on the space-time
translationsX0,X1,X−1.

The matrixε2 in equation (5.13) corresponds to a continuous contraction ofo(2, 1) to
a Heisenberg algebra. Again equation (5.17) shows the different possible actions of this
Heisenberg algebra on the translations.

Equation (5.18) in turn shows that different ways in which the Abelian algebra,
corresponding toε3 can act on the translations. On the other hand,o(2, 1), corresponding
to ε4 (no contraction in theo(2, 1) part) can only act irreducibly (as ine(2, 1)), or trivially, as
in equation (5.19).

TheZ2 × Z2 non-toroidal grading (3.9) used in section 6 is again not a fine one, but our
treatment is totally equivalent to using the fine grading (3.10).

The non-toroidal contractions are all continuous ones, in that the values of the parameters
εik andψik in equation (7.4) can be varied continuously, while satisfying equations (6.5)–(6.7).
However these contractions are not necessarily generalized Inönü–Wigner ones, in that they
cannot all be viewed as singular changes of basis (over the field of real numbersR). To see
this, consider theo(2, 1) contraction matrixε of equation (6.8). This represents a Lie algebra
for any values ofκ0 andκ1. For κ0 = 1, κ1 = −1 this algebra iso(3) (also for anyκ0 > 0,
κ1 < 0), for all other cases satisfyingκ0κ1 6= 0 it is o(2, 1). Changes of basis correspond to
all casesκ0 > 0, κ1 > 0. E.g.κ0 = −1, κ1 = 1 also corresponds too(2, 1), but theo(2)
generatorL3 ando(1, 1) generatorK2 are interchanged. This is clearly not a change of basis
overR (it would be overC).

For κ1 = 0, κ0 = 1 we obtain the algebrae(2) and the contraction is an Inönü–Wigner
one. On the other andκ1 = 0, κ0 = −1 leads toe(1, 1) and this is not a (singular) change of
basis. Vice versa, if we takeκ0 = 0,κ1 = 1 we obtaine(1, 1) as an In̈onü–Wigner contraction,
whereasκ0 = 0, κ1 = −1 yieldse(2) (not a change of basis).

In any case, the introduction of the contraction matricesε and9 embedso(2, 1) into a
large family of mutually non-isomorphic algebras.

We note that the contractions corresponding to the two different fine gradings in general
give different Lie algebras, mutually isomorphic only in special cases.

Let us say a few words about physical applications.

(1) Probably the most important algebra obtained by graded contractions ofe(2, 1) is the
inhomogeneous Galilei algebra (6.18). It is obtained from the non-toroidal grading, but
not the toroidal one. It could have been obtained using a coarse non-toroidal grading,
namely (aZ2 one) with

L0 = (L3, P0) L1 = {K1,K2, P1, P2} (7.2)

ε =
( ∗ 1

1 0

)
ψ =

( ∗ 1
1 0

)
. (7.3)

(2) The ‘pseudo-Galilei’ Lie algebra (6.19) is accessible frome(2, 1) via toroidal and non-
toroidal contractions. This is the Lie algebra SI(a = 1) and also (6.19).
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In both cases it already appears for coarser gradings, e.g.

L0 = (K2, P1) L1 = {L3K1, P0, P2} (7.4)

with ε andψ as in equation (7.3).
(3) The Casimir operators, or more generally the invariants of the coadjoint representation

of the contracted Lie algebras can be calculated directly. For any Lie algebra with
commutation relations

[Xi,Xk] = c`ikX` 16 i, k, ` 6 n (7.5)

these invariants satisfy

XiF (x1, . . . , xn) = 0 i = 1, . . . , n

Xi = c`ikx`
∂

∂xk

where{x1, . . . xN } are some (commuting) variables. For Inönü–Wigner contractions we
can also introduce the contraction constants into the invariantsI1 andI2 of e(2, 1) and
then obtain the invariants of the contracted Lie algebras in the appropriate limits.

Here we just present the invariants of the Lie algebras SI1–SI7

SI1(a) :I1 = x−1x
a
1 I2 = (b1x−1− b−1x1)x

a−1
1 .

For continuous contractions we havea = 1.

SI2 : I1 = x0 I2 = b0x0 + b1x−1− b−1x1

SI3(a) :I1 = x2
0 − 2x1x−1 I2 = b−1x

a
1

SI4(a,b) :I1 = x1x−1b
c−b
1 I2 = x−1b

c
1

SI5(a,b) :I1 = x0 I2 = xa1bb−1 ab 6= 0

SI6(κ0) : I1 = p2
1 + κ0p

2
2 I2 = k1p2 − k2p1

SI7(κ0) : I1 = p0 I2 = p0`3 + p1k2 − κ0k1p2.
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